26. Stokes' Theorem

a. The Theorem

1. Statement

Stokes' Theorem with a Single Boundary Curve
Let SS be a nice surface in R3\mathbb{R}^3 with a nice properly oriented boundary, S\partial S, and let F\vec{F} be a nice vector field on SS. Then S×FdS=SFds \iint_S \vec{\nabla}\times\vec{F}\cdot d\vec{S} =\oint_{\partial S} \vec{F}\cdot d\vec{s} If the boundary of the surface is a single closed curve, then the boundary must be traversed counterclockwise as seen from the tip of the normal vector to the surface.

Notice that the relative orientation of the surface and it boundary is crucial. If you reverse the direction of the normal to the surface, or if you reverse the direction the boundary curve is traversed (but not both) then the LHS and RHS of the theorem will not be equal, they will differ by a minus sign.

The vector field F\vec{F} is nice if it has continuous first partial derivatives. Similarly, the surface, S,S, and its boundary, S,\partial S, are nice if they are defined by parametric functions with continuous first partial derivatives.

Show Hand

In words, Stokes' theorem says the flux of the curl of a vector field F\vec{F} over a surface SS is equal to the circulation of F\vec{F} around the boundary curve S\partial S. This makes sense in that ×FN\vec{\nabla}\times\vec{F}\cdot \vec{N} measures the rotation of the stuff around the N\vec{N}-axis. So the left side is the total rotation on the surface while the right side is the net rotation around the boundary.

Notice that on the left hand side (LHS) of the theorem, we are integrating the curl of the vector field, ×F\vec{\nabla}\times\vec{F} (and not just F\vec{F}). Since ×F\vec{\nabla}\times\vec{F} is a vector field and we are integrating it over a surface, we need to dot it into the vector differential of surface area, dS=Ndudvd\vec{S}=\vec{N}\,du\,dv. Similarly, on the right hand side (RHS) of the theorem, we are integrating F\vec{F} (and not its curl). Again, since F\vec{F} is a vector field and we are integrating it over the boundary curve, we need to dot it into the vector differential of arc length, ds=vdtd\vec{s}=\vec{v}\,dt.

It is recommended that you first compute ×F\vec{\nabla}\times\vec{F} in rectangular coordinates, and then convert it to the coordinates needed for the surface integral. Computing ×F\vec{\nabla}\times\vec{F} in other coordinate systems is beyond the scope of this course.

Recall that Green's theorem related an integral over a region in the plane to an integral over its boundary curve. Stokes' theorem is a generalization of Green's theorem to 33 dimensions in which the region in the plane is deformed into a surface in 33-dimentional space. In fact, Green's theorem is technically a special case of Stoke's theorem, namely for a surface which happens to lie in a plane. See the page on the 2D Stokes' Theorem.

Stokes' Theorem is usually applied to a surface whose boundary is a single closed curve. So that is where we start:

Compute C×FdS\displaystyle \iint_C \vec{\nabla}\times\vec{F}\cdot d\vec{S} for the vector field F=(yz,xz,z2)\vec{F}=(-yz,xz,z^2) over the cone, CC, given by z=x2+y2z=\sqrt{x^2+y^2} for z3z\le 3 oriented down and out.

eg_cone_arrows_anim

We use Stokes' Theorem to convert the surface integral over the cone into a line integral around the boundary of the cone which is a circle. C×FdS=CFds \iint_C \vec{\nabla}\times\vec{F}\cdot d\vec{S} =\oint_{\partial C} \vec{F}\cdot d\vec{s}

The circle may be parametrized by r(θ)=(3cosθ,3sinθ,3)\vec r(\theta)=(3\cos\theta,3\sin\theta,3). So its velocity is v=3sinθ,3cosθ,0\vec v=\langle -3\sin\theta,3\cos\theta,0\rangle. If we look at this in the first quadrant where sinθ0\sin\theta \ge 0 and cosθ0\cos\theta \ge 0, then vx0v_x \le 0 and vy0v_y \ge 0. So v\vec v points counterclockwise, which is backwards! We need v\vec v clockwise. So we reverse v\vec v: Reverse:v=3sinθ,3cosθ,0 \text{Reverse:}\qquad\vec v=\langle 3\sin\theta,-3\cos\theta,0\rangle

eg_just_counterclockwise

On the curve, the vector field F=(yz,xz,z2)\vec{F}=(-yz,xz,z^2) becomes: FR(r,θ)=9sinθ,9cosθ,9 \left.\vec{F}\right|_{R(r,\theta)} =\langle -9\sin\theta,9\cos\theta,9\rangle So the line integral is: SFds=02πFvdθ=02π(27sin2θ27cos2θ+0)dθ=27(2π)=54π\begin{aligned} \oint_{\partial S} \vec{F}\cdot d\vec{s} &=\int_0^{2\pi} \vec{F}\cdot\vec v\,d\theta \\ &=\int_0^{2\pi} (-27\sin^2\theta-27\cos^2\theta+0)\,d\theta \\ &=-27(2\pi)=-54\pi \end {aligned}

Check: Surface Integral Directly

To check, we compute the surface integral directly. We start by computing the curl of F\vec F: ×F=ı^ȷ^k^xyzyzxzz2=ı^(0x)ȷ^(0y)+k^(zz)=x,y,2z\begin{aligned} \vec{\nabla}\times\vec{F} &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -yz & xz & z^2 \end{vmatrix} \\ &=\hat\imath(0-x)-\hat\jmath(0--y)+\hat k(z--z) \\ &=\langle -x,-y,2z\rangle \end {aligned} In cylindrical coordinates, the surface is z=rz=r. So a parametrization is: R(r,θ)=rcosθ,rsinθ,r \vec R(r,\theta)=\langle r\cos\theta,r\sin\theta,r\rangle On the surface, the curl of F\vec F is: ×FR(r,θ)=rcosθ,rsinθ,2r \left.\vec{\nabla}\times\vec{F}\right|_{R(r,\theta)} =\langle -r\cos\theta,-r\sin\theta,2r\rangle The normal is: N=er×eθ=ı^ȷ^k^cosθsinθ1rsinθrcosθ0=ı^(0rcosθ)ȷ^(0rsinθ)+k^(rcos2θrsin2θ)=rcosθ,rsinθ,r\begin{aligned} \vec N&=\vec e_r\times\vec e_\theta =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \cos\theta & \sin\theta & 1 \\ -r\sin\theta & r\cos\theta & 0 \end{vmatrix} \\ &=\hat\imath(0-r\cos\theta)-\hat\jmath(0--r\sin\theta) +\hat k(r\cos^2\theta--r\sin^2\theta) \\ &=\langle -r\cos\theta,-r\sin\theta,r \rangle \end {aligned} This points up and in. (The zz-component is positive while the xx and yy components are negative in the first quadrant.) So we reverse the normal: Reverse:N=rcosθ,rsinθ,r \text{Reverse:}\qquad\vec N=\langle r\cos\theta,r\sin\theta,-r\rangle Finally, we can compute the integral: C×FdS=02π03×FR(r,θ)Ndrdθ=02π03(r2cos2θr2sin2θ2r2)drdθ=03r2dr02π(1+2)dθ=[r33]03[3θ]02π=9(6π)=54π\begin{aligned} \iint_C \vec{\nabla}\times\vec{F}\cdot d\vec{S} &=\int_0^{2\pi}\int_0^3 \left.\vec{\nabla}\times\vec{F}\right|_{R(r,\theta)} \cdot \vec N\,dr\,d\theta \\ &=\int_0^{2\pi}\int_0^3 (-r^2\cos^2\theta-r^2\sin^2\theta-2r^2)\,dr\,d\theta \\ &=-\int_0^3 r^2\,dr \int_0^{2\pi} (1+2)\,d\theta \\ &=-\left[\dfrac{r^3}{3}\right]_0^3\left[\rule{0pt}{10pt}3\theta\right]_0^{2\pi} \\ &=-9(6\pi)=-54\pi \end {aligned}

Both methods gave the same answer. This checks both computations and also verifies Stokes' Theorem for this function and surface. Notice how much easier the line integral was. This will not always be the case.

Use Stokes' Theorem to compute H×FdS\displaystyle \iint_H \vec{\nabla}\times\vec{F}\cdot d\vec{S} for the vector field F=(y,x,x2y2)\vec{F}=(y,-x,-x^2-y^2) over the hemisphere, HH, given by z=9x2y2z=\sqrt{9-x^2-y^2} oriented up and out.

ex_hemisph_arrows_anim

Answer

H×FdS=HFds=18π\displaystyle \iint_H \vec{\nabla}\times\vec{F}\cdot d\vec{S} =\oint_{\partial H} \vec{F}\cdot d\vec{s}=-18\pi

[×]

Solution

By Stokes' Theorem: H×FdS=HFds \iint_H \vec{\nabla}\times\vec{F}\cdot d\vec{S} =\oint_{\partial H} \vec{F}\cdot d\vec{s} The boundary is the circle of radius 33 in the xyxy-plane traversed counterclockwise, which may be parametrized as: r(θ)=(3cosθ,3sinθ,0) \vec r(\theta)=(3\cos\theta,3\sin\theta,0) The velocity is: v(θ)=3sinθ,3cosθ,0 \vec v(\theta)=\langle -3\sin\theta,3\cos\theta,0\rangle which does point counterclockwise. On the circle, the vector field F=(y,x,x2y2)\vec{F}=(y,-x,-x^2-y^2) becomes: Fr(θ)=(3sinθ,3cosθ,9cos2θ9sin2θ)=(3sinθ,3cosθ,9)\begin{aligned} \left.\vec{F}\right|_{\vec r(\theta)} &=(3\sin\theta,-3\cos\theta,-9\cos^2\theta-9\sin^2\theta) \\ &=(3\sin\theta,-3\cos\theta,-9) \end {aligned} So the line integral is: HFds=02πFvdθ=02π(9sin2θ9cos2θ+0)dθ=9(2π)=18π\begin{aligned} \oint_{\partial H} \vec{F}\cdot d\vec{s} &=\int_0^{2\pi} \vec{F}\cdot\vec v\,d\theta \\ &=\int_0^{2\pi} (-9\sin^2\theta-9\cos^2\theta+0)\,d\theta \\ &=-9(2\pi)=-18\pi \end {aligned}

[×]

Check

We check by computing the surface integral directly. We start by computing the curl of F\vec F: ×F=ı^ȷ^k^xyzyxx2y2=ı^(2y)ȷ^(2x)+k^(11)=2y,2x,2\begin{aligned} \vec{\nabla}\times\vec{F} &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ y & -x & -x^2-y^2 \end{vmatrix} \\ &=\hat\imath(-2y)-\hat\jmath(-2x)+\hat k(-1-1) \\ &=\langle -2y,2x,-2\rangle \end {aligned} Since the surface is a hemisphere of radius 33, we parametrize starting with spherical coordinates and setting ρ=3\rho=3: R(ϕ,θ)=3sinϕcosθ,3sinϕsinθ,3cosϕ \vec R(\phi,\theta) =\langle 3\sin\phi\cos\theta,3\sin\phi\sin\theta,3\cos\phi\rangle On the surface, the curl of F\vec F is: ×FR(ϕ,θ)=6sinϕsinθ,6sinϕcosθ,2 \left.\vec{\nabla}\times\vec{F}\right|_{R(\phi,\theta)} =\langle -6\sin\phi\sin\theta,6\sin\phi\cos\theta,-2\rangle The normal is: N=eϕ×eθ=ı^ȷ^k^3cosϕcosθ3cosϕsinθ3sinϕ3sinϕsinθ3sinϕcosθ0=ı^(9sin2ϕcosθ)ȷ^(9sin2ϕsinθ)+k^(9sinϕcosϕcos2θ9sinϕcosϕsin2θ)=9sin2ϕcosθ,9sin2ϕsinθ,9sinϕcosϕ\begin{aligned} \vec N&=\vec e_\phi\times\vec e_\theta =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 3\cos\phi\cos\theta & 3\cos\phi\sin\theta & -3\sin\phi \\ -3\sin\phi\sin\theta & 3\sin\phi\cos\theta & 0 \end{vmatrix} \\ &=\hat\imath(--9\sin^2\phi\cos\theta)-\hat\jmath(-9\sin^2\phi\sin\theta) \\ &\quad+\hat k(9\sin\phi\cos\phi\cos^2\theta--9\sin\phi\cos\phi\sin^2\theta) \\ &=\langle 9\sin^2\phi\cos\theta,9\sin^2\phi\sin\theta,9\sin\phi\cos\phi\rangle \end {aligned} This points up and out as desired. Finally, we can compute the integral: H×FdS=02π0π/2×FR(r,θ)Ndϕdθ=02π0π/2(54sin3ϕsinθcosθ+54sin3ϕsinθcosθ18sinϕcosϕ)dϕdθ=1802π0π/2sinϕcosϕdϕdθ=18(2π)[sin2ϕ2]0π/2=18π\begin{aligned} \iint_H \vec{\nabla}\times\vec{F}\cdot d\vec{S} &=\int_0^{2\pi}\int_0^{\pi/2} \left.\vec{\nabla}\times\vec{F}\right|_{R(r,\theta)} \cdot\vec N\,d\phi\,d\theta \\ &=\int_0^{2\pi}\int_0^{\pi/2} (-54\sin^3\phi\sin\theta\cos\theta+54\sin^3\phi\sin\theta\cos\theta \\ &\qquad-18\sin\phi\cos\phi)\,d\phi\,d\theta \\ &=-18\int_0^{2\pi}\int_0^{\pi/2}\sin\phi\cos\phi\,d\phi\,d\theta \\ &=-18(2\pi)\left[\dfrac{\sin^2\phi}{2}\right]_0^{\pi/2} =-18\pi \end {aligned}

[×]

Remark

Both methods gave the same answer. This checks both computations and also verifies Stokes' Theorem for this function and surface. Notice how much easier the line integral was.

[×]

We have now verified Stokes' Theorem for a couple of functions and surfaces. We will verify it more later in this chapter and prove it still later.

© 2025 MYMathApps

Supported in part by NSF Grant #1123255